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Abstract

Consistent negative polarization differences (i.e. differences between the vertical and
the horizontal brightness temperature) are observed when looking at precipitating sys-
tems by ground-based radiometers at slant angles. These signatures can be par-
tially explained by one-dimensional radiative transfer computations that include ori-
ented non-spherical raindrops. However some cases are characterized by polarization
values that exceed differences expected from one-dimensional radiative transfer.

A three-dimensional fully polarized Monte Carlo model has been used to evaluate
the impact of the horizontal finiteness of rain shafts with different rain rates at 10, 19,
and 30 GHz. The results show that because of the reduced slant optical thickness in
finite clouds, the polarization signal can strongly differ from its one-dimensional coun-
terpart. At the higher frequencies and when the radiometer is positioned underneath
the cloud, significantly higher negative values for the polarization are found which are
also consistent with some observations. When the observation point is located outside
of the precipitating cloud, typical polarization patterns (with troughs and peaks) as a
function of the observation angle are predicted. An approximate 1-D slant path radia-
tive transfer model is considered as well and results are compared with the full 3-D
simulations to investigate whether or not three-dimensional effects can be explained
by geometry effects alone. The study has strong relevance for low-frequency passive
microwave polarimetric studies.

1 Introduction

Microwave polarization signatures related to cloud systems and observed by pas-
sive ground-based or space-borne radiometers have been reported by several authors
(Heymsfield and Fulton, 1994; Spencer et al., 1989; Prigent et al., 2001, 2005; Kutuza
et al., 1998; Czekala et al., 2001a; Troitsky et al., 2003). Since no other polarization
sources (e.g. polarized emission/scattering by surfaces) are in place these signatures
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are related to the interaction of radiation with the cloud constituents and can be at-
tributed to non-spherical hydrometeors (like raindrops or ice crystals) with preferred
orientations. Many theoretical studies (for a detailed review and references see Hafer-
man, 2000) demonstrated that the interaction with atmospheric constituents changes
the polarization state of radiation. Even for locally isotropic radiation sources (like
spherical water/ice particles), multiple scattering produces some amount of polariza-
tion by itself (e.g. see Liu and Simmer, 1996). However the presence of dichroic media
makes polarization signatures more likely and causes a much wider variety of features
(e.g. Czekala, 1998; Czekala and Simmer, 1998, 2002; Evans and Stephens, 1995;
Evans et al., 1998; Battaglia and Simmer, 20061).

Polarimetric passive microwave measurements have been rarely exploited to quan-
titatively retrieve properties of the hydrometeors contained in the field of view. On the
other hand active sensors with polarization diversity considerably ameliorate hydrome-
teor retrievals. E.g., rainfall estimates receive a considerable improvement when dual-
polarized radar measurements are performed (see Sect. 7 in Bringi and Chandrasekar,
2001 and references therein). The basis for this information is the well defined equilib-
rium shape of raindrops and their orientation distribution in absence of turbulence and
wind shear. Based on the same physical foundation, Czekala et al. (2001b) proposed
to discriminate cloud and rain liquid water path by ground-based polarized microwave
radiometry. Although ground-based microwave radiometry is a fairly established tech-
nique to retrieve the vertically-integrated liquid water path (LWP), water vapor profiles,
and temperature profiles (e.g. Janssen, 1996), current LWP retrievals (not using polar-
ized observations) are limited in accuracy by the presence of drizzle and rain, which
introduces a substantial change in the proportionality between water mass and bright-
ness temperature (7). Cloud droplets have a different Tz per water mass ratio than
larger raindrops (Rayleigh scattering versus Mie scattering). Since larger drops exhibit
a polarization signature in the downwelling microwave radiation, such ambiguities can

! Battaglia, A. and Simmer, C.: Explaining the polarization signal from rain dichroic media,
J. Quant. Spectrosc. Radiat. Transfer, submitted, 2006.
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potentially be significantly reduced with polarized observations. This idea has been
never fully tested by field measurements. Nevertheless, ground based observations
(e.g. Kutuza et al., 1998; Czekala et al., 2001a) have confirmed distinctive signatures
(i.e. the presence of strong negative polarizations) in low microwave frequencies down-
welling radiation coming from raining clouds. An example of the mean polarisation
difference PDzTg —Tg (with corresponding standard deviation) ground-based obser-
vations performed with a 19.2 GHz dual polarization radiometer at 30° elevation angle
in Southern Germany for a total of 513 observation days and sorted according to the
T values can be found in Fig. 6 in Czekala et al. (2001a). PDs show a typical nega-
tive signal first decreasing with increasing Tz, then saturating around 200 K and finally
increasing towards zero for Tz>220K. This general behavior of the PDs can be ex-
plained by radiative transfer computations (e.g. Czekala and Simmer, 1998; Czekala
et al., 1999) which involve a 1-D raining cloud setup containing perfectly aligned rain-
drops. Spherical raindrops can produce only positive signals in this same setup.

However, in this same observational dataset, Czekala et al. (20012a) noticed the
presence of events with very bad agreement between model and observations. For
instance, Fig. 1 (which is adapted from Fig. 17 by Czekala et al., 2001a) demonstrates
that, for some events, the ground based observations (dotted line) cannot be simu-
lated at all in a 1-D setup. In Fig. 1, the two lower continuous lines represent results
obtained with 1-D non-spherical rain layers of different thickness; the warmest profile
corresponds to the thickest layer, which has a temperature profile with higher tempera-
ture close to the ground. The different points in each curve corresponds to different rain
rates (RR hereafter). This would suggest that the observational points correspond to
the temporal development of the rain shower with its corresponding intensity evolution.

When separating each single shower event the (75, PD) measurements generally
present a concave shape (or part of it) similar to that reproduced with 1-D radiative
transfer simulations performed with different RR. However the observed shapes differ
from the 1-D simulations for different features.

1. Amplitude of the minimum: observations are characterized by the presence of
5430
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strong negative PDs with signals down to —18 K which cannot be reproduced at
allin a 1-D scenario.

2. Position of the minimum: this is located at lower Tzs in the observation curve than
in the simulated one.

3. Slope of the ascending and descending part: for the observations the slope is
much more negative/positive in the descending/ascending part.

Coincidental observations indicate high RR for this event; this suggests a convective
precipitation type, which is typically characterized by small horizontal scales. Hence
Czekala et al. (2001a) conclude that 3-D effects are very likely to be present in this and
in other similar situations, but no studies have been performed to support this idea.

It is the main goal of this paper to investigate whether or not the pattern shown in
Fig. 1 can be explained in a setup which includes both dicroic media and 3-D configu-
rations. More generally the paper aims (a) at understanding how the 3-D structure can
affect both the Tgs and the PDs at all frequencies (10-19-30 GHz) and in all viewing
configurations that are likely to be used for rain/cloud liquid water discrimination and
(b) at explaining characteristic patterns and signatures caused by 3-D rainy structures.
The analysis is extended to all polarization channels, including the third and the fourth
Stokes components.

To achieve these goals, the 3-D vector radiative transfer equation (VRTE hereafter)
is solved for 3-D scenarios involving non-spherical raindrops by a backward-forward
methodology, briefly described in Sect. 2. The model is applied to simple cloud box
scenarios described in Sect. 3. Results presented in Sect. 4 are inter-compared with
1-D slant path (SP hereafter) approximations in Sect. 5. Section 6 revisits 3-D results
in the light of the weaknesses of 1-D modeling illustrated in Fig. 1. Finally conclusions
are drawn in Sect. 7.
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2 Method of solution of the vector radiative transfer equation: backward-
forward Monte Carlo

The VRTE (for details see Haferman, 2000) represents the basic equation to describe
the interaction between radiation and the atmospheric constituents. In its general form
it can be solved with many different methodologies, a review of which is provided e.g. by
Matzler et al. (2006). Different techniques have been developed to numerically treat the
radiative transfer equation for the full Stokes vector in a 3-D environment in the pres-
ence of dichroic media (Haferman et al., 1993; Kutuza et al., 1998; Davis et al., 2005;
Battaglia and Mantovani, 2005). A recent intercomparison study has demonstrated
that because of its lower computational cost the backward-forward Monte Carlo tech-
nique (Liu et al., 1996) based on importance sampling (Davis et al., 2005) represents
the most efficient way to face passive microwave radiative transfer problems related
to optically thick 3-D structured clouds including non spherical preferentially oriented
hydrometeors. Therefore, the VRTE has been solved by a forward-backward Monte
Carlo scheme. In this work the algorithm is a recoding of the scheme presented by
Davis et al. (2005) in a Cartesian grid without using the concept of a “cloud box”. The
cloud structure is embedded in a background atmosphere like in Battaglia and Manto-
vani (2005) while the surface is described by either a Fresnel or a Lambertian model.
The interaction with the surface is treated in a way similar to an interaction with an
atmospheric constituent (Eqgs. 9—13 in Davis et al., 2005) by applying importance sam-
pling. In the backward segment the probability of scattering by the surface is evaluated
for non-polarized radiation, py,,.- Note that, for Fresnel surfaces, this is not the true
probability since in this case the true probability depends on the polarization state of
the incident radiation. In order to take this into account, a biasing technique is applied
in the forward segment:

— in case of a scattering event, the Stokes vector impinging at the surface is nor-
malized by pn,0 @nd then multiplied with the bidirectional reflection matrix of the
surface (see Eqgs. 35—-37 in Haferman, 2000);
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— in case of an absorption event, a photon is emitted from the surface with an emis-
sion vector proper to the surface type (see Egs. 36—40 in Haferman, 2000) nor-
malized by the factor (1-pynp01)-

The algorithm has been recently developed in the frame of a radiative transfer intercom-
parison study and validated with other Monte Carlo schemes, Battaglia et al. (2006)2.

3 Box type cloud model

In order to quantify the effects of the 3-D structure of a raining cloud on the radiation
field sensed by a polarimetric ground-based radiometer, the backward-forward method
is applied to a box-type cloud model, as illustrated in Fig. 2. L, and L, are the hori-
zontal dimensions of the rain shaft while H is its height. The three numbers (H,LX,Ly)
expressed in km define a specific cloud configuration. For instance, configuration “422”
refers to a cloud box with a 4 km height and with a square horizontal dimension of 2 km.
The cloud box contains horizontally oriented raindrops, modeled as oblate spheroids.
The axial ratios (lower than 1) are parameterized according to Andsager et al. (1999) as
a function of equivalent spherical raindrop diameter D, while the drop size distribution
is an exponential Marshall and Palmer with different rainfall rates. The single scatter-
ing properties (i.e. the extinction and the phase matrix, and the emission vector) are
computed according to Mishchenko (2000). The surface is assumed to be Lambertian
with emissivity equal to 1. The atmosphere is supposed to be water vapour saturated
with a linear temperature lapse rate of -5 K/km; the temperature of the top of the rain
layer, Tyop, coincides with the freezing layer. Cosmic radiation impinges at 7,=2.7 K at
the top of the atmosphere.

2 Battaglia, A., Davis, C., Emde, C., and Simmer, C.: Microwave radiative transfer inter-
comparison study for 3-D dichroic media, J. Quant. Spectrosc. Radiat. Transfer, submitted,
2006.
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The downwelling Stokes vectors at the ground are computed at different positions
relative to the rain shaft for 21 zenith viewing angles with cosines sampled between
—1 and 0 with step 0.05. The radiances are simulated as sensed by a radiometer with
an infinite angular resolution either located underneath the cloud looking upward or
looking at the side of the cloud from outside of the rain shaft (this second option is the
one depicted in Fig. 2). The position of the observation point is individuated by the
coordinates (P, P,), as referred to the coordinate axis plotted in Fig. 2.

Although the scenario is very simple, it follows previous similar 3-D modeling
(e.g. Weinman and Davies, 1978; Kummerow and Weinman, 1988; Liu et al., 1996)
and it is the natural extension of the 1-D scenarios proposed in Czekala et al. (1999),
which are the basis to explain the experimental polarimetric measurements observed
at the bottom of a raining layer in Czekala et al. (2001a). No ice phase and no melt-
ing hydrometeors have been considered. While ice particles have been found to have
a small effect on the downwelling signal (Czekala and Simmer, 2002), the melting
layer will certainly produce an enhancement of the 7zs, due to the extinction peak and
the increase in the optical thickness, a typical signature at low microwave frequencies
(Battaglia et al., 2003 and references therein). Practically, the cloud will appear thicker
than it actually is. As regards to the PD signal, although the evolution of the axial ratio
of a melting particles is not straightforward (like shown Raynaud et al., 2000), certainly
the bright band will correspond to a peak in the differential attenuation as well, which is
more marked at lower frequencies (e.g. panel (b) in Figs. 6—7 by Zhang et al., 1996).
Since events affected by 3-D effects are supposed to have a more convective nature
(thus no bright band) the detailed evaluation of this effect remains out of the scope of
this work.

4 Results

As a first example a “444” rain shaft with #/#=10 mm/h is considered. Results for / and
Q at the three frequencies investigated and at different observation points are plotted in
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Fig. 3. Each symbol curve of Fig. 3 represents a different observation point as indicated
in the legend. While in the / panels two additional curves have been added (the 1-D
(continuous) and the clear sky (dashed) solution), in the Q panels the clear sky solution
(always zero) has been omitted.

Depending on the viewing angle and to the observation point 7gs assume interme-
diate values between 1-D and clear sky 7gs. Obviously when looking at the cloud from
the outside (P, <0) for zenith angles 6, satisfying H tan(8,)<|P,| (e.g. for ©<-0.93 or
u<-0.75 for the square and the cross line, respectively in Fig. 3) the solution coin-
cides with the clear sky solution. Conversely when looking at the cloud from the inside
(P,>0) for zenith angles satisfying H tan(8,)<L,—-P, (e.g. for u<-0.99 or u<-0.94 or
u<-0.75 for the triangle, the dash-dotted and the diamond line respectively in Fig. 3)
the solution is approximately equal to the 1-D solution. For these observation geome-
tries, 3-D results are generally colder than the 1-D approximation because of photons
leaking from the side of the cloud (Kummerow and Weinman, 1988; Roberti et al.,
1994; Liu et al., 1996; Bauer et al., 1998): while at the lowest frequency this effect
is practically undetectable it becomes more and more visible at higher frequencies
(e.g. 2.2K at 19.4 GHz and 8 K at 30.0 GHz at nadir) because of the larger single scat-
tering albedo (SSA hereafter). The intensities are largely determined by the cloud
sensed optical thickness (while the clear sky gas absorption optical thickness remains
the same in all configurations) with higher Tgs produced by higher cloud sensed optical
thicknesses. The larger sensed optical thickness in 1-D configurations explains why
Tg[1-D]>Tg[3-D]. Close to grazing angles all the intensities observed from outside
(square and cross lines in Fig. 3) converge approximately to the same solution, since
the same cloud optical thickness (that one corresponding to a cloud thickness L, at
horizontal directions) is sensed. When looking at the rain shaft from underneath the
cloud (triangle, dash-dotted and diamond lines in Fig. 3) Tgs constantly decrease when
moving from P,=0 to P,=L, because of the reduction in the sensed optical thickness.

For the polarization fields, the results of 3-D scenarios are quite different from those
obtained from a plane-parallel cloud as well. However, for these quantities results are
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not confined between the 1-D approximation and the clear sky fields (zero polarization)
and a great variety of patterns is found depending on the viewing position, the sensed
optical thickness and the scattering regime. Battaglia and Simmer (2006)" showed
that, at low microwave frequencies (like considered here), a crucial role is played by
the 0-order scattering term (hereafter indicated by an apex [0]), which in the limit of
high and small sensed optical thicknesses in a 1-D geometry becomes:

lm PDONW) = ~Too [@y (H) - @y ()] (1)
term A
lim PDO ) = T (" % Tiop *+ Toot ¢, H
fm PDINW) = To(xf ) - 15 0) + === (750001 - @y ] - (W) - @ 00])
term B term C

()

respectively, where Ty, and T,,; are the brightness temperature at the top and at the

bottom of the rain layer, w, and wy (’Z'SV/ and 'r:’,) are the SSAs (slanted optical thick-
nesses of the rain layer) for vertically and horizontally polarized radiation in the viewing
direction. When reverting to a 3-D configuration expressions similar to Egs. (1-2) apply.
We only have to replace Ty, with the temperature at the highest point in the intercep-
tion region between the SP and the cloud and T, with the downwelling 7z (induced by
gas emission plus cosmic background) impinging at that point in the viewing direction.
Especially at grazing angles this quantity can be much higher than 7,=2.7 K; if so “term
B” on the right hand side of Eq. (2) will tend to cancel the effect of “term C”. Moreover in
3-D scenarios an additional PD reduction is caused by the gas layer present between
the observation point and the rain shaft in configurations with L, <O.

In general, for horizontally aligned particles, PD'™ tends to be positive/negative for
thick/thin layers: in Eq. (2) the first term is generally negligible (7, is small), while both
“term A” and “term C” in Eq. (1) and Eq. (2) take negative values. As a result, positive
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down-welling PDs are induced by propagation effects when thick layers are sensed
while negative PDs (proportional to the slant optical thickness) are induced by emis-
sion when thin layers are sensed. To better demonstrate this property, Fig. 4 shows
19.4 GHz PDs as a function of the slant optical thickness for a 1-D rain layer of thick-
ness equal to 2 and to 4km (continuous and dashed lines, respectively). Since the
zenith angle is fixed at 60° (4=0.5) the optical thickness is increased by varying the
RR from 0 to 60 mm/h. At small optical thickness PDs are negative and decrease lin-
early with Ts,=0.5(15'f,+12), they reach a minimum around 74,=1.2, then they increase
towards values close to zero corresponding to high values of 7, i.e. to high RAs. Note
that for the two 1-D curves PD—0K and not to positive values: at high RRs SSAs are
not negligible so that higher order scattering terms tend to mask the pDY! signatures
(Battaglia and Simmer, 2006 ), which would produce a positive signal. Similar patterns
(not shown) have been found at different viewing angles with the position of the mini-
mum always around 74 ~1 but with larger negative values for the minima at more slant
viewing angles; moreover, at viewing angles greater than 70° a relative maximum with
slightly positive values appears around 7,~6. After that PDs decrease toward zero
values. At grazing angles, higher 7, are reached at lower RRs; therefore SSAs are
still low and the PD signature associated with Eq. (1) can show up. In Fig. 4 the
continuous curve corresponding to a 2 km-thick rain layer is characterized by a more
negative minimum (-7.3 K) than the 4 km-thick rain layer (-6.1K). In effect, the con-
dition 7,,21.2 is satisfied at RARs equal to 15 mm/h and to 8 mm/h, respectively; thus,
since higher RRs imply larger and more elongated raindrops, higher PDs are found.
In Fig. 4 results from 3-D scenarios “444” (diamond symbols), “222” (circle symbols)
and “422” (cross symbols) are superimposed. Scatter points correspond to observation
positions with P,=-3.5,-2.5,...3.5 and £,=0.5, 1.5 in the “444” configuration and with
P,=-3.75,-325,...1.75 and P,=0.25,0.75 in the “422” and “222" configurations.
Two main features are evident in the 3-D scenarios: more negative values are found in
the region at small 7, (and for 7,=1.2 around the minimum) while positive PD results
are obtained in the region of larger 7,,. For the analyzed 3-D configurations with a fixed
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rain shaft height H, the same optical thickness can be achieved with different RRs:
as before, at small 75, highest RR's produce more negative PDs. When reverting to
the region at high 7, positive values up to 2.4 K are reached for viewing positions with
P,<0. This is possible because, in contrast to what happens for the 1-D case, the
contributions from higher order of scattering do not cancel the zero-order of scattering
contribution.

In the light of these considerations some features of the panels in Fig. 3 can be bet-
ter understood. At the lowest frequency 10.4 GHz (see top right panel in Fig. 3) emis-
sion/absorption processes are dominant so that the PDs are essentially determined by
the term PD?: 3-D effects can be interpreted here as pure geometrical ones, i.e. they
can be evaluated by taking into account the geometrical variation of the sensed optical
thickness. In this case, in the 1-D approximation, 7,,<1 for all u<-0.1, so that the ap-
proximation (2) can be used. A fortiori Eq. (2) can be applied for all viewing positions in
the 3-D scenario as well. Since in this regime the PDs are proportional to the sensed
optical thickness a reduction (compared to the 1-D approximation) of the PDs is found
in all 3-D configurations, which is linearly proportional to the reduction in 7,,. When in-
creasing the frequency at constant AR (i.e. moving from the top to the bottom in Fig. 3)
the regime of small slant optical thicknesses is confined toward zenith angles closer
to nadir. Obviously, in the 3-D configurations, due to the reduction of the slant optical
thickness, this region can actually extend to higher i values. Although higher scatter-
ing orders become increasingly more important at higher frequencies the 0-order of
scattering term still strongly affects the total PD signal. For instance, the signature of
this term can be seen in the typical PD patterns with troughs and peaks for observa-
tion points outside of the cloud (square and cross lines in bottom right panel of Fig. 3).
As a rule of thumb, at the same viewing angle, more negative PDs are expected for
those viewing positions which have slant optical thickness closer to 1.0. As an order
of magnitude, the optical thickness of a 4 km-thick 10 mm/h layer is approximately 0.2,
0.8 and 2.1 at the three frequencies under investigation, respectively.

Figure 5 presents a cross section of the PD field at £,=1.5km as a function of the
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position P, and of the viewing angle u for a RR=25mm/h at 30.0 GHz. Both strongly
negative and slightly positive PDs can be found; on the contrary, for this case, the 1-D
approximation predicts PDs always very close to zero with values between —-0.12 at
u=-0.8 and 0.1 at grazing angles. In effect, in the 1-D configuration the radiometer
always senses an optical thickness larger than 5 while in the 3-D scenario the sensed
optical thickness can be much smaller. This is particularly true in the region where
P,>3 km with viewing angles far from nadir. Note that the largest variation in PDs is
met when moving the observation positions underneath the cloud; when looking the
cloud from outside differences are less pronounced especially at low elevation angles
when the same cloud slant optical thickness is intercepted by the viewing beam.

5 3-D effects: intercomparison with a 1-D slant path approximation

3-D effects are generally regarded as caused by geometrical and by scattering factors
(Battaglia et al., 2005 and reference therein). When scenarios with weak scattering are
considered the leakages from the warm side of the cloud can be accounted for by 1-D
SP approximation (Liu et al., 1996; Bauer et al., 1998; Roberti and Kummerow, 1999).
On the other hand for scattering scenarios, 3-D effects have to be evaluated on a case
by case basis.

1-D SP approximation-based calculations have been performed with the fast RT4
code (Evans and Stephens, 1991) and compared with 3-D computations. In Fig. 6
the differences between the two methodologies are drawn for the same cases illus-
trated in Fig. 3. Results are practically the same where clear sky conditions are met
(e.g. at nadir for all positions with P, <0). Departures are quite small at 10 GHz with
Tgs and PDs always within 0.5K and 0.05K, respectively except at close to grazing
angles (u> - 0.15). This is expected since at this RR the SSA is lower than 0.07 while
Keyi~0.05 km™'. Thus the predominant term affecting the total signal is the zero order of
scattering, which is perfectly accounted for by the SP approximation. But this method-
ology takes only approximately into account successive orders of scattering. In effect,
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these contributions depend on the radiation field impinging at each point of the SP from
any direction, so that it cannot be correctly evaluated in a 1-D SP approximation. On
the other hand strong departures are found at 30.0 GHz (SSA~0.32, k,,;~0.5 km'1)
where differences in Tgs (PDs) can be as high as 15K (5K) at grazing views (bottom
panels of Fig. 6). Because of the leakages from the side of the clouds Tgzs results in
the 1-D SP approximation have larger discrepancies (~10K) at nadir as well. These
large discrepancies are certainly attributable to the deficiencies of the 1-D SP model
in computing terms with orders of scattering >1. These simple examples demonstrate
that the 1-D SP approximation does not provide acceptable results except when low
frequency and small RRs are considered.

Another way to show the necessity of a full 3-D radiative transfer model is to eval-
uate the radiation field when moving in the Y-direction at a fixed L, within the cloud
(see Fig. 2). In Fig. 7 the results of a Y-cross section are depicted in correspondence
to the four positions individuated by the star-symbols in Fig. 5. A 1-D SP model ob-
viously predicts no variation of the radiation field when moving along the Y-direction
because the SP is the same for all these viewing positions (all located underneath the
cloud). Vice versa Fig. 7 shows that, for a rain shaft at 25 mm/h at 30 GHz (SSA=~0.4,
Keyi~1.5 km_1) departures as large as 3K and 15 K can be found in PD and T patterns,
respectively.

Finally, in the 3-D simulations some peculiar aspects (already noted in Battaglia
et al,, 20062) are present: PDs different from zero can be found at nadir (see bottom
right panel in Fig. 3 and upper part in the panel of Fig. 5) and the U and V/ channels are
generally different from zero. While the fourth Stokes parameter remains always very
low the U parameter shows a signal which would be certainly detectable. An example
of the U field is shown in Fig. 8 where values as high as 1.8 K are reached. Note that
U values different from zero are generated just because of the 3-D structure (i.e. the
horizontal in-homogeneity) of the simulation. It is worthwhile reminding the reader that
raindrops perfectly aligned in the horizontal plane (i.e. with zero drop canting angle) are
considered in this study. Kutuza et al. (1998) analysed the radiometric response of 1-D
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rain clouds containing canted raindrops at frequencies in the range 6-35 GHz. They
concluded that “the first azimuthal harmonic of the third Stokes parameter for emission
is proportional to the average canting angle of the oblate raindrops” and showed that
the magnitude of U reaches maximum values of the order of 2-3 K for realistic distri-
butions of the drop canting angle (see their Fig. 9). The same order of magnitude has
been found by our computations as summarized by the right panel in Fig. 8. Therefore,
a general understanding of the behavior of the U signal generated by raining clouds
should include both 3-D and canting effects.

6 The Tz-PD relationship

In order to better compare our simulations with the measurements in Fig. 1 a scatter
plots obtained with three 3-D configurations (“444” (diamonds), “222” (circles), “422”
(crosses)) at an elevation angle equal to 30° is depicted in Fig. 9. Each point in the
scatter plots corresponds to a couple (7Tz, PD) simulated at a different observation po-
sitions (like for Fig. 4) for a rain shaft with RR=1,2...,10,15, ..., 30, 40, 50, 60 mm/h.
Its color relates to the RR of the rain shaft (as indicated in the color bar). The contin-
uous and dashed line corresponding to the 1-D solutions with H=2, 4 km are included
for completeness in Fig. 9. Obviously, the 3-D geometry introduces a much wider vari-
ability of possible combinations of Tgs and PDs. This allows to explain experimental
observations like those depicted in Fig. 1 and seems to overcome the weaknesses of
the 1-D model listed in Sect. 1.

Another important consideration: while in the frame of a 1-D model with a fixed
freezing level and temperature/water vapor profile, the time evolution of the (T, PD)
observations can be explained only in terms of a variation of the RR of the rain shaft,
within 3-D scenarios the same observations can be explained also by a movement
(relative to the observation point) of the rain shaft (at fixed RR). This is demonstrated
in the middle and bottom scatter plots of Fig. 9 by the black dash-dotted lines, which
represent the different (75, PD) couples which can be generated by the same box rain
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shaft when observed from different positions. At 19.4, 30.0 GHz RRs of 10 mm/h,
25mm/h are selected respectively. For each of these curves, points with lower Tgs
generally correspond to observation points underneath the cloud, with nearby cloud
boundaries in the viewing direction.

Scatter plots like Fig. 9 do not indicate that 3-D effects produce on average more
negative polarization. In effect, the relative distribution of RRs has to be taken into
consideration. At 10 GHz for RRs lower than 10 mm/h (which are the most commonly
found) 3-D effects tend actually to decrease the amplitude of the PD signal with respect
to the 1-D case. On the contrary, at 30.0 GHz a considerable amount of points with very
negative polarization is generated by a rain shaft with RR<15mm/h. Since these RRs
are more likely to occur in natural precipitation it is expected that the 3-D effects will
be more frequent at this higher frequency (even if with a little smaller amplitude than at
the lower frequencies).

7 Conclusions

A simple box-type rain shaft has been selected to investigate 3-D effects generated
by rain-type dichroic media onto the signal sensed by upward looking ground-based
polarimetric radiometers with channels around 10, 19 and 30 GHz. Major findings can
be summarized as following.

— Because of the reduction in the slant optical thickness for finite clouds, 3-D Tgs
assume intermediate values between clear sky and 1-D configuration values (left
panels in Fig. 3). Well know leakages effects are confirmed as well.

— The polarization signal can strongly differ from its one-dimensional counterpart
(e.g. right panels in Fig. 3). When the observation point is located outside of
the precipitating cloud, typical polarization patterns (with troughs and peaks) as a
function of the observation angle are predicted.
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— The most negative polarization differences are obtained at slant optical thick-

nesses around 1 (Fig. 4). Since in a 3-D configuration the same slant optical
thickness is achieved at higher RRs (which are characterized by more elongated
raindrops) than in a 1-D configuration, 3-D box-type rain shaft produce stronger
negative polarizations when the same slant optical thickness are sensed.

A 1-D SP approximation is generally unsatisfactory when considering Tgs and
PDs except at small RRs and at the lower frequencies (Fig. 6). 3-D effects like
inhomogeneous radiation field within the cloud (Fig. 7), PDs different from zero at
nadir (bottom right panel in Fig. 3) and non null third Stokes component (as high
as 2K, see Fig. 8) are peculiar of 3-D radiative transfer and cannot be accommo-
dated by 1-D modeling.

A wider variety of possibilities is achieved by 3-D modeling when producing scat-
ter plots of Tgs versus PDs (Fig. 9). 3-D effects also allow to explain the time
evolution of observations in the (Tg, PD) plane also in terms of a shift of the rain
shaft relative to the observation position, and not only in terms of a change either
in the rain intensity or in the atmosphere vertical profile (like in 1-D modeling). 3-D
effects can produce higher negative polarizations at 10 GHz at very high RRs, at
19.4 GHz at high RRs and at 30.0 GHz at intermediate RRs (RR<5mm/h). Neg-
ative PD values as low as —16 K are predicted by 3-D scenarios (in accordance
with observations). Due to the highest occurrence of low RRs 3-D rain structure
are believed to lower (increase), on average, the amplitude of the negative PD
signal at 10 GHz (30 GHz).

In retrieval algorithms which exploit the polarization signatures measured by

ground-based radiometers (e.g. Czekala et al., 2001a) 3-D effects must be ac-

counted for. To do this, besides the vertical temperature and water vapor pro-

file of the atmosphere additional information about the horizontal structure of the

clouds has to be collected. An ideal combination would consist in operating a

polarimetric radiometer in synergy with a rain radar, able to capture the horizontal
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structure of the rain shaft; in addition otherwise, zenith scanning capabilities of
the radiometer can be exploited.

— New measurements with scanning multifrequency polarimetric radiometers are
highly recommended. Not only these measurements will be crucial for rain/cloud
water discrimination but they will also provide a better insight and an independent
confirmation of raindrop shapes and falling behavior modeling widely exploited by
polarimetric radars.

Besides the 3-D effects here analysed, the discrimination technique between cloud
and rain liquid water path based on ground-based polarimetry still requires dedicated
studies. In particular, the impact of the drop size distribution assumption (in our study
a Marshall and Palmer) onto the Tg—PD relationship, the best selection of a set of
frequencies to better face this uncertainty within the frame of a multi-spectral approach,
and a precise quantification of the melting layer effect on PDs remain open issues
currently under study.

Acknowledgements. The authors are grateful to F. Evans for making the RT 4 software available
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\ Freezing level

T=273.15K

Rain shaft

Fig. 2. Schematic for the rain cloud simulation. Radiances have been computed at observation
points located at the location (P,, P,) . The blue-shaded area contains the rain system. Non
shaded areas contain only atmospheric gases.
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Fig. 3. Intensity / (left panels) and PDs (right panels) evaluated at different observation posi-
tions (P, P,) (see Fig. 2 for the reference frame) as indicated in the legend. Top, centre and
bottom row correspond to 10.7 GHz, 19.4 GHz and 30.0 GHz, respectively. A “444” rain shaft
(see text for explanation) with RF=10 mm/h is considered.
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Fig. 4. Scatter plot of the slant optical thickness versus PDs at 19.4 GHz and for u=0.5. The

color of the scatter-points is modulated by the rain-rate of the cloud box.
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Fig. 5. Variation of the PD field at 30.0 GHz as a function of the P, position and of the cosine
of the viewing angle at £,=0.5 km for configuration “444” with RR =25 mm/h.
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Fig. 6. Difference between the 3-D computation and the 1-D SP approximation in correspon-
dence to the same panels of Fig. 3.
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Fig. 7. Variation of the PD (top) and T field (bottom) at 30.0 GHz for a “444” rain shaft with
RR=25mm/h at constant slant optical thickness at u=0.5. Different P, corresponds to different
slanted optical thicknesses.
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Fig. 8. Left panel: same as Fig. 5 for the U field. Right panel: maximum values assumed by the
absolute value of the third Stokes component at u=0.5 for different rain rates, 3-D configuration

and frequencies.
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Fig. 9. Scatter plots of Tzs versus PDs at the three frequencies under investigation. A zenith
angle 6,=60° is selected. The color bar modulates the rain rate of the rain shaft. See text for

details.
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